

Кабельная коробка

Кабельную коробку также называют кабельным коннектором.

Кабельный ввод

Кабельный ввод ранее назывался кабельной коробкой. Он служит для подвода тока через стенку кабельной коробки двигателя к его обмотке.

В обмотках, находящихся в жидкости, например, двигателей герметичных насосов с мокрым ротором, кабельный ввод состоит из медного контактного болта. Он изолирован от стенки коробки изолирующими колпачками из твердого материала, уплотнен посредством прокладки круглого сечения и герметично привинчен с помощью резьбовой втулки. см. рис. 1 Кабельный ввод

Кабельный ввод не следует путать с кабельным сальником.

Кабельный сальник

ным вводом.

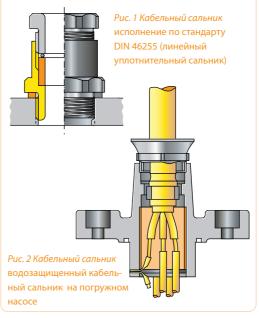
Кабельным сальником называют ввод соединительной линии в клеммную коробку или корпус электродвигателя. Он предотвращает проникновение влаги в корпус клеммной коробки. см. рис. 1 и 2 Кабельный сальник

Кабельный сальник не следует путать с кабель-

Кавитационный запас давления

Кавитационный запас давления, с точки зрения физики, означает то же самое, что и величина NPSH (допустимый кавитационный запас). Кавитационный запас давления и величина NPSH могут численно различаться по величине Z_{ς} , поскольку их расчет происходит от разных плоскостей отсчета. *см. рис. 1 NPSH*

На практике же применяется только величина NPSH.


Кавитационный износ

Кавитационный износ иначе называют кавитационной эрозией. Попадание вызванных кавитацией микроструй на жесткие стенки трубопровода вызывает сильные гидроудары. Концентрация сил на ограниченной площади поверхности может привести к разрушению материала.

Очаги разъедания возникают после определенного инкубационного периода в местах сниженной устойчивости материала. Здесь образуются мельчайшие углубления, особенно сильно подверженные агрессивному воздействию. Очаги разъедания материала имеют крупнопористую структуру.

Обнаружение эрозии материала на внутренних частях насоса

- Измерением
- На основании потери веса
- На основании износа наплавляемого металла при проведении ремонта
- На основании больших затрат времени на проведение ремонтных работ

Если воздействие кавитации невозможно ограничить конструктивными или производственно-техническими мерами, например, за счет более плавных переходов или изменения условий течения, и если не удается оттеснить разрушающиеся пузырьки пара от стенок трубопровода в свободный поток, то кавитационный износ может быть снижен только за счет использования подходящего материала.

Устойчивые к кавитации материалы обладают высоким пределом прочности в сочетании с высокой коррозионной устойчивостью. Например, чугуну (JL 1040) присвоен коэффициент износа от кавитации 1,0, в соответствии с этим классифицируются другие материалы.

см. рис. 1 Кавитационный износ

Указанные значения являются усредненными и приведены с учетом многих погрешностей на основании анализа результатов международных экспериментальных исследований на аппаратуре с искусственно вызванной кавитацией. Безусловное использование этих значений недопустимо, поскольку каждый отдельный коэффициент в большой степени зависит от типа кавитационной нагрузки. Существенное влияние на кавитационный износ также оказывают химические и электрохимические характеристики взаимодействующих веществ: жидкости и основного материала.

Стальное литье	GP240GH+QT	0,8
Оловянная бронза	CC480K-GS	0,1
Хромистое стальное литье	GX20Cr14	0,2
Многокомпо- нентная алюми- ниевая бронза	CC333G-GC	0,1
Нихромовое стальное литье	GX5CrNi19-10	0,05
Дуплексное стальное литье	Noridur [®] GX3CrNiMoCuN24-6-2-3	0,02

Рис.1 Кавитационный износ: материалы в порядке уменьшения устойчивости к кавитации; коэффициент износа типичного металлолитья (объект сопоставления – серый чугун JL 1040, коэффициент 1,0)

Кавитационный коэффициент быстроходности

Понятие кавитационного коэффициента быстроходности было введено Пфлейдерером; сегодня коэффициент S как параметр для оценки кавитационного запаса давления рабочего колеса центробежного насоса малоупотребителен. Коэффициент S определяется как:

$$S = (\frac{n}{100})^2 \cdot \frac{Q}{k \cdot H_H^{3/2}}$$

92

$$k = 1 - (D_{1,i}/D_{1,a})^2$$

n частота вращения, об/мин

Q подача, м³/с

Н_Н кавитационный запас давления насоса, м

 ${\sf D}_{\sf 1.a}$ входной диаметр рабочего колеса

D_{1.i} диаметр ступицы на входной стороне

рабочего колеса

S кавитационный коэффициент

быстроходности

Кавитационный коэффициент быстроходности осевых рабочих колес составляет около 2,5, радиальных – 3,0. Для специальных конструкций возможны значительно более высокие значения. В соответствии с международными нормами для определения всасывающей способности центробежных насосов сегодня используется понятие удельного числа кавитации n_{ss}.

Кавитационный шум

Типичный кавитационный шум центробежных насосов можно сравнить с шумом, производимым гравием в работающей бетономешалке.

Кавитация

Под кавитацией понимается возникновение и резкое замыкание полостей, например, пузырьков пара, в потоке жидкости. Существуют различные критерии оценки условий возникновения, интенсивности и силы воздействия кавитации применительно к центробежным насосам. Различают кавитацию газа и пара.

Критерии кавитации

• Появление кавитационных пузырьков (начальная кавитация, NPSH_i) до определенной максимальной длины (L_{BV} например, 5 мм) на передней кромке лопатки. Для проверки наличия пузырьков начальное давление снижается до тех пор, пока не появятся первые видимые кавитационные пузырьки.